
Balls and Bins: Smaller Hash Families
and Faster Evaluation

L. Elisa Celis
ecelis@cs.washington.edu
University of Washington

Omer Reingold
omer.reingold@microsoft.com

Microsoft Research SVC

Gil Segev
gil.segev@microsoft.com
Microsoft Research SVC

Udi Wieder
uwieder@microsoft.com
Microsoft Research SVC

Abstract— A fundamental fact in the analysis of randomized al-
gorithms is that when n balls are hashed into n bins independently
and uniformly at random, with high probability each bin contains
at most O(logn/ log logn) balls. In various applications, however,
the assumption that a truly random hash function is available is not
always valid, and explicit functions are required.

In this paper we study the size of families (or, equiva-
lently, the description length of their functions) that guarantee
a maximal load of O(logn/ log log n) with high probability, as
well as the evaluation time of their functions. Whereas such
functions must be described using Ω(logn) bits, the best up-
per bound was formerly O(log2 n/ log logn) bits, which is at-
tained by O(logn/ log logn)-wise independent functions. Tra-
ditional constructions of the latter offer an evaluation time of
O(logn/ log log n), which according to Siegel’s lower bound
[FOCS ’89] can be reduced only at the cost of significantly
increasing the description length.

We construct two families that guarantee a maximal load of
O(logn/ log log n) with high probability. Our constructions are
based on two different approaches, and exhibit different trade-offs
between the description length and the evaluation time. The first
construction shows that O(logn/ log logn)-wise independence
can in fact be replaced by “gradually increasing independence”,
resulting in functions that are described using O(logn log logn)
bits and evaluated in time O(logn log log n). The second construc-
tion is based on derandomization techniques for space-bounded
computations combined with a tailored construction of a pseu-
dorandom generator, resulting in functions that are described
using O(log3/2 n) bits and evaluated in time O(

√
logn). The

latter can be compared to Siegel’s lower bound stating that
O(logn/ log log n)-wise independent functions that are evaluated
in time O(

√
logn) must be described using Ω(2

√
logn) bits.

1. INTRODUCTION

Traditional analysis of randomized algorithms and data
structures often assumes the availability of a truly random
function, whose description length and evaluation time are
not taken into account as part of the overall performance.
In various applications, however, such an assumption is not
valid and explicit constructions are required. This motivated
a well-studied line of research aiming at designing explicit
and rather small families of functions, dating back more than
30 years to the seminal work of Carter and Wegman [5].

In this paper we study explicit constructions of fam-
ilies for the classical setting of hashing n balls into n
bins. A well-known and useful fact is that when n balls
are hashed into n bins independently and uniformly at
random, with high probability each bin contains at most

O(log n/ log log n) balls. Thus, a natural problem is to
construct explicit and significantly smaller families of func-
tions that offer the same maximal load guarantee. More
specifically, we are interested in families H of functions
that map a universe U into the set {1, . . . , n}, such that
for any set S ⊆ U of size n a randomly chosen function
h ∈ H guarantees a maximal load of O(log n/ log log n)
with high probability. The main measures of efficiency for
such families are the description length and evaluation time
of their functions.

It is well-known that any family of O(log n/ log log n)-
wise independent functions guarantees a maximal load of
O(log n/ log log n) with high probability, and this already
yields a significant improvement over a truly random func-
tion. Specifically, such functions can by represented by
O(log2 n/ log log n) bits, instead of O(|U | log n) bits for
a truly random function1. A natural approach for reducing
the description length is to rely on k-wise independence
for k = o(log n/ log logn), but so far no progress has
been made in this direction (even though to the best of
our knowledge an explicit lower bound is only known for
k = 2 [1]). At the same time, a standard application of the
probabilistic method shows that there exists such a family
where each function is described by only O(log n) bits,
which is in fact optimal. This naturally leads to the following
open problem (whose variants were posed explicitly by Alon
et al. [1] and by Pagh et al. [26]):

Problem 1: Construct an explicit family that guaran-
tees a maximal load of O(log n/ log log n) with high
probability, in which each function is described by
o(log2 n/ log log n) bits, or even O(log n) bits.

In terms of the evaluation time, an O(log n/ log log n)-
wise independent function can be evaluated using traditional
constructions in time O(log n/ log log n). A lower bound
proved by Siegel [30] shows that the latter can be reduced
only at the cost of significantly increasing the description
length. For example, even for k = O(log n/ log log n) a
constant evaluation time requires polynomial space. In the
same work Siegel showed a tight (but impractical) matching
upper bound. Subsequent constructions improve the con-
stants considerably (see Section 1.2 for a more elaborated

1For simplicity we assume |U | is polynomial in n, as otherwise one can
reduce the size of U using a pair-wise independent function.

discussion), but suffer from descriptions of length at least nε

bits for a small constant ε > 0. This leads to the following
open problem:

Problem 2: Construct an explicit family that guaran-
tees a maximal load of O(log n/ log log n) with high
probability, in which each function is evaluated in time
o(log n/ log log n) and represented by no(1) bits.

1.1. Our Contributions

We present two constructions of hash families that guar-
antee a maximal load of O(log n/ log log n) when hashing n
elements into n bins with all but an arbitrary polynomially-
small probability. These are the first explicit construc-
tions in which each function is described using less than
O(log2 n/ log log n) bits. Our constructions offer different
trade-offs between the description length of the functions
and their evaluation time. Table I summarizes the parameters
of our constructions with prior work.

Construction 1 – gradually-increasing independence:
In our first construction each function is described
using O(log n log log n) bits and evaluated in time
O(log n log log n). Whereas O(log n/ log log n)-wise inde-
pendence suffices for a maximal load of O(log n/ log log n),
the main idea underlying our construction is that the entire
output need not be O(log n/ log log n)-wise independent.

Our construction is based on concatenating the outputs of
O(log log n) functions which are gradually more indepen-
dent: each function f in our construction is described using
d functions h1, . . . , hd, and for any x ∈ [u] we define

f(x) = h1(x) ◦ · · · ◦ hd(x) ,

where we view the output of each hi as a binary string, and
◦ denotes the concatenation operator on binary strings. The
first function h1 is only O(1)-wise independent, and the level
of independence gradually increases to O(log n/ log log n)-
wise independence for the last function hd. As we increase
the level of independence, we decrease the output length of
the functions from Ω(log n) bits for h1 to O(log log n) bits
for hd. We instantiate these O(log log n) functions using
ε-biased distributions. The trade-off between the level of
independence and the output length implies that each of
these functions can be described using only O(log n) bits
and evaluated in time O(log n).

Construction 2 – derandomizing space-bounded com-
putations: In our second construction each function is
described using O(log3/2 n) bits and evaluated in time
O(log1/2 n). Each function f in our construction is de-
scribed using a function h that is O(1)-wise indepen-
dent, and ` = O(2log1/2 n) functions g1, . . . , g` that are
O(log1/2 n)-wise independent, and for any x ∈ [u] we define

f(x) = gh(x)(x) .

Naively, the description length of such a function f
is O(` · log3/2 n) bits, and the main idea underlying our

approach is that instead of sampling the functions g1, . . . , g`
independently and uniformly at random, they can be ob-
tained as the output of an explicit pseudorandom generator
for space-bounded computations using a seed of length
O(log3/2 n) bits. Moreover, we present a new construction
of a pseudorandom generator for space-bounded computa-
tions in which the description of each of these ` functions
can be computed in time O(log1/2 n) without increasing the
length of the seed.

Our generator is obtained as a composition of those
constructed by Nisan [23] and by Nisan and Zucker-
man [24] together with an appropriate construction of a
randomness extractor for instantiating the Nisan-Zuckerman
generator. The evaluation time of our second construction
can be compared to Siegel’s lower bound [30] stating
that O(log n/ log log n)-wise independent functions that are
evaluated in time O(log1/2 n) must be described using
Ω(2log1/2 n) bits.

We note that a generator with an optimal seed length
against space-bounded computations will directly yield a
hash family with the optimal description length O(log n)
bits. Unfortunately, the best known generator [23] es-
sentially does not give any improvement over using
O(log n/ log log n)-wise independence. Instead, our above-
mentioned approach is based on techniques that were devel-
oped in the area of pseudorandomness for space-bounded
computations with which we obtain an improvement in our
specific setting. Specifically, our construction is inspired by
the generator constructed by Lu [19] for the simpler class
of combinatorial rectangles.

Extensions: It is possible to show that the hash families
constructed in this paper can be successfully employed
for storing elements using linear probing. In this setting
our constructions guarantee an insertion time of O(log n)
with high probability when storing (1 − α)n elements in
a table of size n, for any constant 0 < α < 1 (and
have constant expected insertion time as follows from [26]).
Prior to our work, constructions that offered such a high
probability bound had either description length of Ω(log2 n)
bits with Ω(log n) evaluation time (using O(log n)-wise
independence [29]) or description length of Ω(nε) bits with
constant evaluation time [30], [28].

In addition, our constructions can easily be augmented to
offer O(log log n)-wise independence (for the first construc-
tion), and O(log1/2 n)-wise independence (for the second
construction) without affecting their description length and
evaluation time. This may be useful, for example, in any ap-
plication that involves tail bounds for limited independence.

Lower bounds: We accompany our constructions with
two somewhat folklore lower bounds. First, for a universe
of size at least n2, any family of functions has a maximal
load of Ω(log n/ log log n) with high probability. Second,
the functions of any family that guarantees a maximal load of
O(log n/ log log n) with probability 1−ε must be described

Description
length (bits)

Evaluation time

Simulating full indepen-
dence ([11], [25])

O(n logn) O(1)

[30],[8],[28] nε (for constant
ε < 1)

O(1)

O
(

logn
log logn

)
-wise inde-

pendence (polynomials)
O
(

log2 n
log logn

)
O
(

logn
log logn

)
This paper (Section 4) O

(
log3/2 n

)
O
(

log1/2 n
)

This paper (Section 3) O(logn log log n) O(logn log logn)

Table I
THE DESCRIPTION LENGTH AND EVALUATION TIME OF OUR

CONSTRUCTIONS AND PREVIOUSLY KNOWN CONSTRUCTIONS THAT
GUARANTEE A MAXIMAL LOAD OF O(logn/ log logn) W.H.P..

by Ω(log n + log(1/ε)) bits. Due to space constraints, the
proofs of these lower bounds are contained in the full version
of this paper [6].

1.2. Related Work

As previously mentioned, a truly random function guar-
antees a maximal load of O(log n/ log log n) with high
probability, but is described by Ω(u log n) bits. Pagh and
Pagh [25] and Dietzfelbinger and Woelfel [11], in a rather
surprising and useful result, showed it is possible to simulate
full independence for any specific set of size n (with high
probability) using only O(n log n) bits and constant evalua-
tion time. A different and arguably simpler construction was
later proposed by Dietzfelbinger and Rink [10].

In an influential work, Siegel [30] showed that for a small
enough constant ε > 0 it is possible to construct a family of
functions where there is a small probability of error, but if
error is avoided then the family is nε-wise independent, and
each function is described using nε

′
bits (where ε < ε′ < 1).

More importantly, a function is evaluated in constant time.
While this construction has attractive asymptotic behavior
it seems somewhat impractical, and was improved by Di-
etzfelbinger and Rink [10] who proposed a more practical
construction (offering the same parameters). Siegel [30] also
proved a cell probe time-space tradeoff for computing almost
k-wise independent functions. Assuming that in one time
unit we can read a word of log n bits, denote by Z the
number of words in the representation of the function and
by T the number of probes to the representation. Siegel
showed that when computing a k-wise δ-dependent function
into [n] then either T ≥ k or Z ≥ n 1

T (1− δ). Observe that
if k is a constant, setting T ≤ k − 1 already implies the
space is polynomial in n. Also, computing a O(log n)-wise
independent function in time O(

√
log n) requires the space

to be roughly O(2
√

logn).
Few constructions diverged from the large k-wise inde-

pendence approach. In [1] it is shown that matrix multipli-
cation over Z2 yields a maximal load of O(log n log log n)
with high probability, where each function is described using
O(log2 n) bits and evaluated in time O(log n). Note that this

family is only pairwise independent. The family of functions
described in [8] (which is O(1)-wise independent) yields a
maximal load of O(log n/ log log n) with high probability,
where each function is described using nε bits and evaluated
in constant time (similar to [30]). The main advantage of this
family is its practicality: it is very simple and the constants
involved are small.

Recently, Pǎtraşcu and Thorup [28] showed a another
practical and simple construction that uses nε space and
O(1) time and can replace truly random functions in various
applications, although it is only 3-wise independent. A
different approach was suggested by Mitzenmacher and
Vadhan [21], who showed that in many cases a pair-wise
independent function suffices, provided the hashed elements
themselves have a certain amount of entropy.

1.3. Paper Organization

In Section 2 we present the basic definitions and tools
used in our constructions. In Sections 3 and 4 we present our
first and second constructions, respectively. We conclude in
Section 5 with extensions and open problems. Please see [6]
for a full version of this paper.

2. PRELIMINARIES AND TOOLS

We now present the background used in our constructions.

2.1. Basic Definitions and the Computational Model

Throughout this paper, we consider log to be of base 2.
For an integer n ∈ N we denote by [n] the set {1, . . . , n},
and by Un the uniform distribution over the set {0, 1}n. For
a random variable X we denote by x ← X the process
of sampling a value x according to the distribution of X .
Similarly, for a finite set S we denote by x ← S the
process of sampling a value x according to the uniform
distribution over S. The statistical distance between two
random variables X and Y over a finite domain Ω is
SD(X,Y) = 1

2

∑
ω∈Ω |Pr [X = ω]−Pr [Y = ω] |. For two

bit-strings x and y we denote by x ◦ y their concatenation.
We consider the unit cost RAM model in which the ele-

ments are taken from a universe of size u, and each element
can be stored in a single word of length w = O(log u)
bits. Any operation in the standard instruction set can be
executed in constant time on w-bit operands. This includes
addition, subtraction, bitwise Boolean operations, parity, left
and right bit shifts by an arbitrary number of positions,
and multiplication. The unit cost RAM model has been the
subject of much research, and is considered the standard
model for analyzing the efficiency of data structures and
hashing schemes (see, for example, [9], [15], [16], [20], [25]
and the references therein).

2.2. Random Variables and Limited Independence

A family F of functions f : [u] → [v] is k-wise δ-
dependent if for any distinct x1, . . . , xk ∈ [u] the statistical

distance between the distribution (f(x1), . . . , f(xk)) where
f ← F and the uniform distribution over [v]k is at most δ.
A simple example for k-wise independent functions (with
δ = 0) is the family of all polynomials of degree k − 1
over a finite field. Each polynomial can be represented using
O(kmax{log u, log v}) bits and evaluated in time O(k)
assuming field elements fit into a constant number of words.

For our constructions we require functions that have a
more succinct representation, and still enjoy a fast evalu-
ation. For this purpose we implement k-wise δ-dependent
functions using ε-biased distributions [22]. A sequence of
random variables X1, . . . , Xn over {0, 1} is ε-biased if for
any non-empty set S ⊆ [n] it holds that |Pr [⊕i∈SXi = 1]−
Pr [⊕i∈SXi = 0] | ≤ ε, where ⊕ is the exclusive-or operator
on bits. Alon et al. [2, Sec. 5] constructed an ε-biased
distribution over {0, 1}n where each point x ∈ {0, 1}n
in the sample space can be specified using O(log(n/ε))
bits, and each individual bit of x can be computed in time
O(log(n/ε)). Moreover, in the unit cost RAM model with
a word size of w = Ω(log(n/ε)) bits, each block of t ∈ [n]
consecutive bits can be computed in time O(log(n/ε) + t).2

Using the fact that for any k, an ε-biased distribution is
also k-wise δ-dependent for δ = ε2k/2 (see, for example,
[2, Cor. 1]), we obtain the following corollary:

Corollary 2.1. For any integers u and v such that v is
a power of 2, there exists a family of k-wise δ-dependent
functions f : [u]→ [v] where each function can be described
using O(log u + k log v + log(1/δ)) bits. Moreover, in the
unit cost RAM model with a word size of w = Ω(log u +
k log v + log(1/δ)) bits each function can be evaluated in
time O(log u+ k log v + log(1/δ)).

The construction is obtained from the ε-biased distribution
of Alon et al. over n = u log v bits with ε = δ2−k log v/2.
One partitions the u log v bits into u consecutive blocks of
log v bits, each of which represents a single output value in
the set [v].

A useful tail bound for limited independence: The
following is a natural generalization of a well-known tail
bound for 2k-wise independent random variables [4, Lemma
2.2] (see also [12]) to random variables that are 2k-wise δ-
dependent. See the full version of this paper [6] for a proof.

Lemma 2.2. Let X1, . . . , Xn ∈ {0, 1} be 2k-wise δ-
dependent random variables, for some k ∈ N and 0 ≤ δ <
1, and let X =

∑n
i=1Xi and µ = E [X]. Then, for any

t > 0 it holds that

Pr [|X − µ| > t] ≤ 2

(
2nk

t2

)k
+ δ

(n
t

)2k

.

2Specifically, the seed consists of two elements x, y ∈ GF[2m], where
m = O(log(n/ε)), and the ith output bit is the inner product (modulo 2)
of the binary representations of xi and y.

2.3. Randomness Extraction

The min-entropy of a random variable X is H∞ (X) =
− log(maxx Pr [X = x]). A k-source is a random vari-
able X with H∞ (X) ≥ k. A (T, k)-block source
is a random variable X = (X1, . . . , XT) where
for every i ∈ [T] and x1, . . . , xi−1 it holds that
H∞ (Xi|X1 = x1, . . . , Xi−1 = xi−1) ≥ k. In our setting
we find it convenient to rely on the following natural
generalization of block sources:

Definition 2.3. A random variable X = (X1, . . . , XT) is
a (T, k, ε)-block source if for every i ∈ [T] it holds that if
(x1, . . . , xi−1)← (X1, . . . , Xi−1), then

Pr [H∞ (Xi|X1 = x1, . . . , Xi−1 = xi−1) ≥ k] ≥ 1− ε .

The following lemma and corollary show that any source
with high min-entropy can be viewed as a (T, k, ε)-block
source.

Lemma 2.4 ([14]). Let X1 and X2 be random vari-
ables over {0, 1}n1 and {0, 1}n2 , respectively, such that
H∞ (X1X2) ≥ n1 + n2 − ∆. Then, H∞ (X1) ≥ n1 − ∆,
and for any ε > 0 it holds that

Pr
x1←X1

[H∞ (X2|X1 = x1) < n2 −∆− log(1/ε)] < ε .

Corollary 2.5. Any random variable X = (X1, . . . , XT)
over ({0, 1}n)

T with H∞ (X) ≥ Tn−∆ is a (T, n−∆−
log(1/ε), ε)-block source for any ε > 0.

The following defines the notion of a strong randomness
extractor.

Definition 2.6. A function Ext : {0, 1}n × {0, 1}d →
{0, 1}m is a strong (k, ε)-extractor if for any k-source X
over {0, 1}n it holds that

SD ((S,Ext(X,S)), (S, Y)) ≤ ε ,

where S and Y are independently and uniformly distributed
over {0, 1}d and {0, 1}m, respectively.

For our application we rely on the generalization of the
leftover hash lemma to block sources [7], [17], [33], showing
that a strong extractor enables to reuse the same seed for
a block source. This generalization naturally extends to
(T, k, ε)-block sources:

Lemma 2.7. Let X = (X1, . . . , XT) be a (T, k, ε)-block
source over {0, 1}n and let H be a family of pairwise
independent functions h : {0, 1}n → {0, 1}m, where
m ≤ k − 2 log(1/ε). Then,

SD ((h, h(X1), . . . , h(XT)), (h, Y1, . . . , YT)) ≤ 2Tε ,

where h ← H, and (Y1, . . . , YT) is independently and
uniformly distributed over ({0, 1}m)

T .

2.4. Pseudorandom Generators for Space-Bounded Compu-
tations

In this paper we model space-bounded computations as
layered branching programs (LBP)3. An (s, v, `)-LBP is a
directed graph with 2s(` + 1) vertices that are partitioned
into ` + 1 layers with 2s vertices in each layer. For every
i ∈ {0, . . . , ` − 1} each vertex in layer i has 2v outgoing
edges to vertices in layer i+ 1, one edge for every possible
string xi ∈ {0, 1}v . In addition, layer 0 contains a designated
initial vertex, and each vertex in layer ` is labeled with 0 or
1. For an (s, v, `)-LBP M and an input x = (x1, . . . , x`) ∈
({0, 1}v)`, the computation M(x) is defined by a walk on
the graph corresponding to M , starting from the initial vertex
in layer 0, and each time advancing to level i along the edge
labeled by xi. The value M(x) is the label of the vertex that
is reached in the last layer.

We now define the notion of a pseudorandom generator
that ε-fools a branching program M . Informally, this means
that M can distinguish between the uniform distribution and
the output of the generator with probability at most ε.

Definition 2.8. A generator G : {0, 1}m → ({0, 1}v)` is
said to ε-fool a layered branching program M if

|Pr [M(G(x)) = 1]− Pr [M(y) = 1]| ≤ ε ,

where x← {0, 1}m and y ← ({0, 1}v)`.

Theorem 2.9 ([23], [18]). For any s, v, ` and ε there exists
a generator G : {0, 1}m → ({0, 1}v)` that ε-fools any
(s, v, `)-LBP, where m = O(v+log `(s+log `+log(1/ε))),
and for any seed x ∈ {0, 1}m the value G(x) can be
computed in time poly(s, v, `, log(1/ε)).

3. A CONSTRUCTION BASED ON
GRADUALLY-INCREASING INDEPENDENCE

In this section we present our first family of functions
which, as discussed in Section 1.1, is based on replac-
ing O(log n/ log log n)-wise independence with “gradually-
increasing independence”. The intuition behind the construc-
tion is a tree where the root contains all the elements, each
level hashes into the next with varying amounts of indepen-
dence, and the leaves are the desired n bins. More formally,
the construction is obtained by concatenating the outputs
of O(log log n) functions which are gradually more inde-
pendent. Each function f ∈ F in our construction consists
of d functions h1, . . . , hd that are sampled independently,
and for any x ∈ [u] we define f(x) = h1(x) ◦ · · · ◦ hd(x),
where we view the output of each hi as a binary string, and ◦
denotes the concatenation operator on binary strings4. Going
from left to right each function in the above concatenation

3In our setting we are interested in layered branching programs that count
the number of balls that are mapped to a specific subset of bins.

4Various approaches based on multilevel hashing are fundamental and
widely used in the design of data structures (see, for example, [13]).

has a higher level of independence (from O(1)-wise almost
independence for h1, to O(log n/ log log n)-wise almost
independence for hd), and a shorter output length (from
Ω(log n) bits for h1, to O(log log n) bits for hd). This
trade-off enables us to represent each of these d functions
using O(log n) bits and to evaluate it in time O(log n). This
constructions allows us to prove the following theorem:

Theorem 3.1. For any constant c > 0 and integers n and
u = poly(n) there exists a family F of functions f : [u]→
[n] satisfying the following properties:

1) Each f ∈ F is described using O(log n log log n) bits.
2) For any f ∈ F and x ∈ [u] the value f(x) can be

computed in time O(log n log log n) in the unit cost
RAM model.

3) There exists a constant γ > 0 such that for any set
S ⊆ [u] of size n it holds that

Pr
f←F

[
max
i∈[n]

∣∣f−1(i) ∩ S
∣∣ ≤ γ log n

log log n

]
> 1− 1

nc
.

3.1. A Formal Description

To simplify the presentation of our construction we as-
sume that n is a power of two (as otherwise we can choose
the number of bins to be the largest power of two which is
smaller than n, and this may affect the maximal load by at
most a multiplicative factor of two). Let d = O(log logn),
and for every i ∈ [d] let Hi be a family of ki-wise δ-
dependent functions hi : [u]→ {0, 1}`i , where:
• n0 = n, and ni = ni−1/2

`i for every i ∈ [d].
• `i = b(log ni−1)/4c for every i ∈ [d − 1], and `d =

log n−
∑d−1
i=1 `i.

• ki`i = Θ(log n) for every i ∈ [d − 1], and kd =
Θ(log n/ log log n).

• δ = poly(1/n).
The exact constants for the construction depend on the error
parameter c, and will be fixed by the analysis in Section 3.2.
Note that Corollary 2.1 provides such families Hi where
each function hi ∈ Hi is represented using O(log u+ki`i+
log(1/δ)) = O(log n) bits and evaluated in time O(log u+
ki`i + log(1/δ)) = O(log n). Each function f ∈ F in our
construction consists of d functions h1 ∈ H1, . . . , hd ∈ Hd
that are sampled independently and uniformly at random.
For any x ∈ [u] we define f(x) = h1(x) ◦ · · · ◦ hd(x).

3.2. Analyzing the Construction

We view the construction as a tree consisting of d + 1
levels that are numbered 0, . . . , d, where levels 0, . . . , d− 1
consist of “intermediate” bins, and level d consists of the
actual n bins to which the elements are hashed. For a given
set S ⊆ [u] of size n, level 0 consists of a single bin
containing the n elements of S. Level 1 consists of 2`1 bins,
to which the elements of S are hashed using the function
h1. More generally, each level i ∈ {1, . . . , d−1} consists of

2
∑i

j=1 `j bins, and the elements of each such bin are hashed
into 2`i+1 bins in level i+ 1 using the function hi+1.

Recall that we defined n0 = n, and ni = ni−1/2
`i for

every i ∈ [d]. The number ni is the expected number of
elements in each bin in level i, and we show that with high
probability no bin in levels 0, . . . , d− 1 contains more than
(1 + α)ini elements, where α = Ω(1/ log log n). This will
be guaranteed by the following lemma.

Lemma 3.2. For any i ∈ {0, . . . , d − 2}, α =
Ω(1/ log log n), 0 < αi < 1, and set Si ⊆ [u] of size at
most (1 + αi)ni it holds that given hi+1 ← Hi+1

Pr

[
max

y∈{0,1}`i+1

∣∣h−1
i+1(y) ∩ Si

∣∣ ≤ (1 + α)(1 + αi)ni+1

]
> 1− 1

nc+1
.

Proof: Fix y ∈ {0, 1}`i+1 , let X =
∣∣h−1
i+1(y) ∩ Si

∣∣, and
assume without loss of generality that |Si| ≥ b(1 + αi)nic.
Then X is the sum of |Si| indicator random variables that are
ki+1-wise δ-dependent, and has expectation µ = |Si|/2`i+1 .
Lemma 2.2 states that

Pr [X > (1 + α)µ]

= 2

(
22`i+1ki+1

α2|Si|

) ki+1
2

+ δ

(
2`i+1

α

)ki+1

.

We now upper bound each of above two summands sepa-
rately. For the first one, recall that `i+1 ≤ (log ni)/4, and
combined with the facts that |Si| ≥ (1+αi)ni−1 ≥ ni and
α = Ω(1/ log log n), this yields

2

(
22`i+1ki+1

α2|Si|

)ki+1/2

≤ 1

2nc+2
, (3.1)

where the last inequality follows from the choice of ki+1

and `i+1 such that ki+1`i+1 = Ω(log n). This also enables
us to upper bound the second summand, noting that for an
appropriate choice of δ = poly(1/n) it holds that

δ

(
2`i+1

α

)ki+1

≤ 1

2nc+2
. (3.2)

Therefore, by combining Equations (3.1) and (3.2), and
recalling that ni+1 = ni/2

`i+1 we obtain

Pr [X > (1 + α)(1 + αi)ni+1]

= Pr
[
X > (1 + α)(1 + αi)

ni
2`i+1

]
≤ 1

nc+2
.

The lemma now follows by a union bound over all y ∈
{0, 1}`i+1 (there are at most n such values).

We are now ready to prove Theorem 3.1. The description
length and evaluation time of our construction were already
argued in Section 3.1, and therefore we focus here on the
maximal load.

Proof of Theorem 3.1: Fix a set S ⊆ [u] of size
n. We begin by inductively arguing that for every level
i ∈ {0, . . . , d − 1}, with probability at least 1 − i/nc+1

the maximal load in level i is at most (1 + α)ini elements
per bin, where α = Ω(1/ log log n). For i = 0 this follows
by our definition of level 0: it contains a single bin with the
n0 = n elements of S. Assume now that the claim holds for
level i and directly apply Lemma 3.2 for each bin in level i
with (1+αi) = (1+α)i. A union bound over all bins in level
i implies that with probability at least 1−(i/nc+1+1/nc+1)
the maximal load in level i+ 1 is at most (1 + α)i+1ni+1,
and the inductive claim follows. In particular, this guarantees
that with probability at least 1− (d− 1)/nc+1, the maximal
load in level d − 1 is (1 + α)d−1nd−1 ≤ 2nd−1, for an
appropriate choice of d = O(log log n).

Now we would like to upper bound the number nd−1.
Note that for every i ∈ [d − 1] it holds that `i ≥
(log ni−1)/4−1, and therefore ni = ni−1/2

`i ≤ 2n
3/4
i−1. By

simple induction this implies ni ≤ 2
∑i−1

j=0(3/4)jn(3/4)i ≤
16n(3/4)i . Thus, for an appropriate choice of d =
O(log log n) it holds that nd−1 ≤ log n. In addition, the
definition of the ni’s implies that nd−1 = n/2

∑d−1
j=1 `j , and

therefore `d = log n−
∑d−1
i=j `j = log nd−1.

That is, in level d − 1 of the tree, with probability at
least 1− (d− 1)/nc+1, each bin contains at most 2nd−1 ≤
2 log n elements, and these elements are hashed into nd−1

bins using the function hd. The latter function is kd-wise
δ-dependent, where kd = Ω(log n/ log log n) and therefore
the probability that any t = γ log n/ log log n ≤ kd elements
from level d− 1 are hashed into any specific bin in level d
is at most (

2nd−1

t

)((
1

nd−1

)t
+ δ

)
≤ 1

nc+3
,

for an appropriate choice of t = γ log n/ log log n and δ =
poly(1/n). This holds for any pair of bins in levels d−1 and
d, and therefore a union bound over all such bins implies
that the probability that there exists a bin in level d with
more than t elements is at most 1/nc+1. This implies that
with probability at least 1−d/nc+1 > 1−1/nc a randomly
chosen function f has a maximal load of γ log n/ log log n.

4. A CONSTRUCTION BASED ON GENERATORS FOR
SPACE-BOUNDED COMPUTATIONS

Our second construction is based on the observation
that any pseudorandom generator which fools small-width
branching programs, directly defines a family of functions
with the desired maximal load. Specifically, for a universe
[u], a generator that produces u blocks of length log n bits
each can be interpreted as a function f : [u] → [n], where
for any input x ∈ [u] the value h(x) is defined to be the xth
output block of the generator. Fixing a subset S ⊆ [u], the

event in which the load of any particular bin is larger than
t = O(log n/ log logn) can be recognized by a branching
program of width t + 1 < n (the program only needs to
count up to t). Assuming the existence of such an explicit
generator with seed of length O(log n) bits implies a family
of functions with description length of O(log n) bits (which
is optimal up to a constant factor).

Unfortunately, the best known generator [23] has seed
of length Ω(log2 n) bits, which essentially does not give
any improvement over using O(log n/ log log n)-wise inde-
pendence. Our construction uses a pseudorandom generator
in an inherent way, but instead of generating O(u log n)

bits directly, will only produce O
(

2
√

logn
)

descriptions of
O
(√

log n
)
-wise independent functions, which we combine

into a single function f : [u] → [n]. The construction is
inspired by Lu’s generator for combinatorial rectangles [19].

We now describe our family F . Let H be a family of
k1-wise independent functions h : [u] → [`] for k1 = O(1)

and ` = O
(

2
√

logn
)

, and let G be a family of k2-wise inde-
pendent functions g : [u]→ [n] for k2 = O

(√
log n

)
. Each

function f ∈ F consists of a function h ∈ H that is sampled
uniformly at random, and of ` functions g1, . . . , g` ∈ G that
are obtained as the output of a pseudorandom generator. The
description of each gj is given by the jth output block of
the generator. For any x ∈ [u] we define f(x) = gh(x)(x).

Using the generator provided by Theorem 2.9, the de-
scription length of each f is O

(
log3/2 n

)
bits. Moreover,

we present a new construction of a pseudorandom generator
in which the description of each gj can be computed in
time O

(√
log n

)
without increasing the length of the seed.

Thus, for any x ∈ [u] the time required for computing
f(x) = gh(x)(x) is O

(√
log n

)
: the value h(x) can be

computed in time O(k1) = O(1), the description of gh(x)

can be computed in time O
(√

log n
)
, and then the value

gh(x)(x) can be computed in time O(k2) = O
(√

log n
)
.

Theorem 4.1. For any constant c > 0 and integers n and
u = poly(n) there exists a family F of functions f : [u]→
[n] satisfying the following properties:

1) Each f ∈ F is described using O
(

log3/2 n
)

bits.
2) For any f ∈ F and x ∈ [u] the value f(x) can be

computed in time O
(√

log n
)

in the unit cost RAM
model.

3) There exists a constant γ > 0 such that for any set
S ⊆ [u] of size n,

Pr
f←F

[
max
i∈[n]

∣∣f−1(i) ∩ S
∣∣ ≤ γ log n

log log n

]
> 1− 1

nc
.

The proof of Theorem 4.1 proceeds in three stages.
First, in Section 4.1 we analyze a simple family F̂ where
g1, . . . , g` are sampled independently and uniformly at ran-
dom. Then, in Section 4.2 we show that one can replace the
descriptions of g1, . . . , g` with the output of a pseudorandom

generator with seed length O
(

log3/2 n
)

bits. Finally in
Section 4.3 we present a new generator that makes it possible
to compute the description of each function gj in time
O
(√

log n
)

without increasing the length of the seed.

4.1. Analyzing the Basic Construction

We begin by analyzing the family F̂ in which each func-
tion f̂ is obtained by sampling h ∈ H and g1, . . . , g` ∈ G
independently and uniformly at random, and define f̂(x) =
gh(x)(x) for any x ∈ [u]. We naturally interpret F̂ as
a two-level process: The function h maps elements into
` = O

(
2
√

logn
)

first-level bins, and then the elements in
each bin j are mapped into n second-level bins using gj .

When hashing a set S ⊆ [u] of size n, we expect
each first-level bin to contain roughly n/` elements, and in
Claim 4.2 we observe this holds with high probability. Then,
assuming each first-level bin contains roughly n/` elements,
Claim 4.3 shows that if the gj’s are sampled independently
and uniformly at random from a family of O

(√
log n

)
-wise

independent functions, the maximal load in the second-level
bins is O(log n/ log log n) with high probability.

For a set S ⊂ [u] denote by Sj the subset of S mapped
to first level bin j; i.e. Sj = S ∩ h−1(j).

Claim 4.2. For any set S ⊆ [u] of size n,

Pr
h←H

[
max
j∈[`]
|Sj | ≤ 2 · n

`

]
> 1− 1

nc+5
.

Proof: For any j ∈ [`] the random variable |Sj | is
the sum of n binary random variables that are k1-wise
independent, and has expectation n/`. Letting ` = β2

√
logn

for some constant β > 0, Lemma 2.2 (for δ = 0 and
t = n/`) guarantees that for an appropriate choice of k1,

Pr
h←H

[
|Sj | > 2 · n

`

]
≤ 2

(
nk1

(n/`)2

)k1/2
= 2

(
βk1

2logn−2
√

logn

)k1/2
≤ 1

nc+6
.

This holds for all j ∈ [`] so a union bound over ` ≤ n yields

Pr
h←H

[
max
j∈[`]
|Sj | > 2 · n

`

]
≤ ` · 1

nc+6
≤ 1

nc+5
.

Claim 4.3. There exists a constant γ > 0 such that for any
set S ⊆ [u] of size n and for any i ∈ [n],

Pr
f̂←F̂

[∣∣∣f̂−1(i) ∩ S
∣∣∣ ≤ γ log n

log log n

]
> 1− 1

nc+4
.

Proof: For any set S ⊆ [u] of size n, Claim 4.2 guaran-
tees that with probability at least 1−1/nc+5, maxj∈[`] |Sj | ≤
2 · n` .From this point on we condition on the latter event and
fix the function h. Let ki,j = |Sj∩g−1

j (i)| be the number of
elements mapped to second level bin i via first level bin j.

The event in which one of the n second-level bins contains
more than t = O(log n/ log log n) elements is the union of
the following two events:
• Event 1: There exists a second-level bin i ∈ [n] and first

level bin j such that ki,j ≥ α
√

log n for some constant
α. If we set gj to be α

√
log n-wise independent, the

probability of this event is at most(
|Sj |

α
√

log n

)
·
(

1

n

)α√logn

≤
(
|Sj |
n

)α√logn

≤ 1

nc+7

for an appropriate choice of ` = O
(

2
√

logn
)

and α.
There are n` < n2 pairs of bins, thus a union bound
implies this occurs with probability at most 1/nc+5.

• Event 2: Some second-level bin i ∈ [n] has t =
O(log n/ log log n) elements with ki,j ≤ α

√
log n

for all j. Since g1, . . . , g` are sampled independently
from a family that is α

√
log n-wise independent, the

probability of this event is at most(
n

t

)(
1

n

)t
≤
(ne
tn

)t
≤ 1

nc+6

for an appropriate choice of t = O(log n/ log log n).
This holds for any second-level bin i ∈ [n], thus a
union bound over all n bins implies this event occurs
with probability at most 1/nc+5.

Combining all of the above, we obtain there exists a constant
γ such that for all sufficiently large n,

Pr
f̂←F̂

[
max
i∈[n]

∣∣∣f̂−1(i) ∩ S
∣∣∣ ≤ γ log n

log log n

]
> 1− 1

nc+4
.

4.2. Derandomizing the Basic Construction

As discussed above, the key observation that allows the
derandomization g1, . . . , g` ∈ G is the fact that the event
in which the load of any particular bin is larger than
t = O(log n/ log log n) can be recognized in O(log n) space
(and, more accurately, in O(log t) space). Specifically, fix a
set S ⊆ [u] of size n, a second-level bin i ∈ [n], and a
function h ∈ H. Consider the layered branching program
MS,h,i that has `+ 1 layers each of which contains roughly
n vertices, where every layer j ∈ [`] takes as input the
description of the function gj and keeps count of the number
of elements from S that are mapped to bin i using the
functions h, g1, . . . , gj . In other words, the jth layer adds to
the count the number of elements x ∈ S such that h(x) = j
and gj(x) = i. Each vertex in the final layer is labeled with
0 and 1 depending on whether the count has exceeded t
(note there is no reason to keep on counting beyond t, thus
it suffices to have only t vertices in each layer).

Let G : {0, 1}m → ({0, 1}v)` be a generator that ε-
fools any (s, v, `)-LBP, where ε = 1/nc+4, s = O(log n),
v = O(k2 log n) = O

(
log3/2 n

)
, and ` = O

(
2
√

logn
)

.

Theorem 2.9 provides an explicit construction of such a
generator with a seed of length m = O(v+log `·(s+log `+

log(1/ε))) = O
(

log3/2 n
)

. For any seed x ∈ {0, 1}m we

use G(x) = (g1, . . . , g`) ∈ ({0, 1}v)` for providing the
descriptions of the function g1, . . . , g`.

By combining Claim 4.3 with the fact that G is a generator
that ε-fools any (s, v, `)-LBP we obtain the following claim:

Claim 4.4. There exists a constant γ > 0 such that for any
set S ⊆ [u] of size n,

Pr
f←F

[
max
i∈[n]

∣∣f−1(i) ∩ S
∣∣ ≤ γ log n

log log n

]
> 1− 1

nc
.

Proof: Let γ > 0 be the constant specified by Claim
4.3. Then for any set S ⊆ [u] of size n and i ∈ [n],

Pr
f←F

[∣∣f−1(i) ∩ S
∣∣ > γ log n

log log n

]
≤ Pr
h←H

[
Pr

g1,...,g`←G
[MS,h,i(g1, . . . , g`) = 1]

]
+

1

nc+4

<
2

nc+4
.

The first inequality follows since G is a generator that
1/nc+4-fools MS,h,i, and the second follows from Claim
4.3. A union bound over all bins i ∈ [n] yields

Pr
f←F

[
max
i∈[n]

∣∣f−1(i) ∩ S
∣∣ ≥ c log n

log log n

]
≤ 1

nc
.

4.3. A More Efficient Generator

As shown in Section 4.2, we can instantiate our con-
struction with any generator G : {0, 1}m → ({0, 1}v)`
that ε-fools any (s, v, `)-LBP, where s = O(log n), v =

O
(

log3/2 n
)

, ` = O
(

2
√

logn
)

, and ε = 1/nc+4. The
generator constructed by Impagliazzo et. al. [18] (following
[23]), whose parameters we stated in Theorem 2.9, provides
one instantiation, but the time it requires to compute each
v-bit output block seems at least logarithmic. Here we
construct a more efficient generator for our parameters,
where each v-bit output block can be computed in time
O
(√

log n
)

without increasing the length of the seed.
The generator we propose uses as a building blocks the

generators constructed by Nisan [23] and by Nisan and
Zuckerman [24]. We first provide a high-level description
of these two generators before describing our generator.

4.3.1. Nisan’s Generator: Let H be a family of pair-
wise independent functions h : {0, 1}v2 → {0, 1}v2 . For
every integer k ≥ 0 Nisan [23] constructed a generator
G

(k)
N : {0, 1}v2 × Hk → ({0, 1}v2)

2k

that is defined
recursively by G

(0)
N (x) = x, and G

(k)
N (x, h1, . . . , hk) =

G
(k−1)
N (x, h1, . . . , hk−1)◦G(k−1)

N (hk(x), h1, . . . , hk), where
◦ denotes the concatenation operator. For any integers v2 and

k, Nisan proved that G(k)
N is a generator that 2−v2 -fools any

(v2, v2, 2
k)-LBP.

When viewing the output of the generator as the con-
catenation of 2k blocks of length v2 bits each, we observe
that each block can be computed by evaluating k pairwise
independent functions. In our setting we are interested in
v2 = O(log n) and 2k = O

(
2
√

logn
)

, and in this case each
output block can be computed in time O

(√
log n

)
. Formally,

from Nisan’s generator we obtain the following corollary:

Corollary 4.5. For any s2 = O(log n), v2 = O(log n), `2 =

O
(

2
√

logn
)

, and ε = poly(1/n), there exists a generator

GN : {0, 1}m2 → ({0, 1}v2)
`2 that ε-fools any (s2, v2, `2)-

LBP, where m2 = O
(

log3/2 n
)

. In the unit cost RAM model
with a word size of w = Ω(log n) bits each v2-bit output
block can be computed in time O

(√
log n

)
.

4.3.2. The Nisan-Zuckerman Generator and an Efficient
Instantiation: Given a (k, ε)-extractor Ext : {0, 1}t1 ×
{0, 1}d1 → {0, 1}v1 Nisan and Zuckerman [24] constructed
a generator GExt

NZ : {0, 1}t1 ×
(
{0, 1}d1

)`1 → ({0, 1}v1)
`1

that is defined as GExt
NZ (x, y1, . . . , y`1) = Ext(x, y1) ◦ · · · ◦

Ext(x, y`1),where ◦ denotes the concatenation operator.
When viewing the output of the generator as the concate-
nation of `1 blocks of length v1 bits each, we observe
that the time to compute each block is the time to com-
pute the extractor Ext. In our setting we are interested in
t1 = O

(
log3/2 n

)
, v1 = O

(
log3/2 n

)
, k = t1 −O(log n),

and ε = poly(1/n), and in Lemma 4.7 we construct an
extractor that has a seed of length d1 = O(log n) bits and
can be computed in time O

(√
log n

)
. As a corollary, from

the Nisan-Zuckerman generator when instantiated with our
extractor we obtain:

Corollary 4.6. For any s1 = O(log n), v1 = O
(

log3/2 n
)

,

`1 = O
(

2
√

logn
)

, and ε = poly(1/n), there

exists a generator GExt
NZ : {0, 1}m1 → ({0, 1}v1)

`1

that ε-fools any (s1, v1, `1)-LBP, where m1 =

O
(

log3/2 n+ 2
√

logn · log n
)

. Moreover, there exists
an extractor Ext such that in the unit cost RAM model with
a word size of w = Ω(log n) bits each v1-bit output block
of the generator GExt

NZ can be computed in time O
(√

log n
)
.

The following lemma presents the extractor that we use
for instantiating the Nisan-Zuckerman generator.

Lemma 4.7. Let t1 = Θ
(

log3/2 n
)

, ∆ = O(log n)

and ε = poly(1/n). There exists a (t1 − ∆, ε)-extractor
Ext : {0, 1}t1 × {0, 1}d1 → {0, 1}v1 , where d1 = O(log n)

and v1 = Ω
(

log3/2 n
)

, that can be computed in time

O
(√

log n
)

in the unit cost RAM model with a word size of
w = Ω(log n) bits.

Proof: Given a random variable X over {0, 1}t1 we par-
tition it into T = t1/z consecutive blocks X = X1◦· · ·◦XT

each of length z bits, where z = d2(∆ + 3 log(2T/ε))e =
O(log n). Without loss of generality we assume that z
divides t1, and otherwise we ignore the last block. Corollary
2.5 guarantees that X is a (T, z − ∆ − log(2T/ε), ε/2T)-
block source. Let H be a family of pair-wise independent
functions h : {0, 1}z → {0, 1}z′ , where z′ = bz − ∆ −
3 log(2T/ε)c = Ω(log n) and each h ∈ H is described
by d1 = O(log n) bits. We define an extractor Ext :
{0, 1}t1 × H → {0, 1}Tz′ by applying a randomly chosen
h ∈ H to each of the T blocks of the source. That is,

Ext(x1 ◦ · · · ◦ xT , h) = h(x1) ◦ · · · ◦ h(xT) .

Lemma 2.7 implies the distribution (h, h(x1), . . . , h(xT))
is ε-close to the distribution (h, y1, . . . , yT), where h← H,

(x1, . . . , xT) ← X , and (y1, . . . , yT) ←
(
{0, 1}z′

)T
. In

addition, in the unit cost RAM model with a word size of
w = Ω(log n) bits each application of h can be done in
constant time, thus the extractor can be computed in time
T = O

(√
log n

)
. Finally, note that the number of outputs

bits is Tz′ = t1z
′/z = Ω

(
log3/2 n

)
.

4.3.3. Our Generator: Recall that we are interested in
a generator G : {0, 1}m → ({0, 1}v)` that ε-fools any
(s, v, `)-LBP, where s = O(log n), v = O

(
log3/2 n

)
,

` = O
(

2
√

logn
)

, and ε = 1/nc+4. Let GNZ : {0, 1}m1 →
({0, 1}v)` be the Nisan-Zuckerman generator that is given
by Corollary 4.6 that ε/2-fools any (s, v, `)-LBP, where
m1 = O

(
log3/2 n+ 2

√
logn · log n

)
. In addition, let GN :

{0, 1}m2 → ({0, 1}v2)
` be Nisan’s generator that is given

by Corollary 4.5 that ε/2-fools any (s, v2, `)-LBP, where
v2 = O(log n) and m2 = O

(
log3/2 n

)
. We define a

generator G as follows: G(x1, x2) = GNZ(x1, GN(x2)).
That is, given a seed (x1, x2) it first computes the output

(y1, . . . , y`) of Nisan’s generator using the seed x2, and then
it computes the output Ext(x1, y1) ◦ · · · ◦ Ext(x1, y`1) of
the Nisan-Zuckerman generator. Observe that the time to
compute the ith v-bit output block is the time to compute the
ith output block for both generators, which is O

(√
log n

)
.

In addition, note that the length of seed is O
(

log3/2 n
)

bits

since each of x1 and x2 is of length O
(

log3/2 n
)

bits. Thus,
it only remains to prove that G indeed ε-fools any (s, v, `)-
LBP. This follows from the construction, and the proof is
contained in the full version of this paper [6].

Lemma 4.8. For the parameters s, v, `, m, and ε specified
above, G is a generator that ε-fools any (s, v, `)-LBP.

5. EXTENSIONS AND OPEN PROBLEMS

Applications: Our constructions can be employed for
storing elements using linear probing, guaranteeing an inser-

tion time of O(log n) with high probability. An interesting
problem is whether these, or similar techniques, can be used
to construct small hash families that are suitable for other
applications. For instance, O(log n)-wise independence is
known to suffice for two-choice hashing [3], [31], cuckoo
hashing [27], and more. Existing constructions have focused
on simplicity and fast computation [11], [32], [25], [28],
albeit with a significant increase to the description length.

Augmenting our constructions with k-wise indepen-
dence: Our constructions can be augmented to offer
O(log log n)-wise and O(log1/2 n)-wise independence re-
spectively without affecting their description length and
evaluation time. Specifically, a function f resulting from
either the first or second construction can be modified to
f(x) + h(x) mod n, where h is sampled from a family
of O(log log n)- or O(log1/2 n)-wise independent functions
respectively. Our analysis easily extends to this case, and the
resulting functions enjoy the level of independence offered
by h. By implementing h appropriately, the description
length and evaluation time of our constructions are not
affected. This may be useful, for example, in any application
that involves tail bounds for limited independence.

A time-space lower bound: Our constructions offer
two different trade-offs between the description length and
the evaluation time. It would be interesting to prove a
lower bound on the time-space trade-off of any family that
guarantees a maximal load of O(log n/ log log n) with high
probability when hashing n balls into n bins. For example,
can we rule out constructions that are optimal in both
description length and evaluation time?

ACKNOWLEDGMENT

We thank Moni Naor for many inspiring discussions.

REFERENCES

[1] N. Alon, M. Dietzfelbinger, P. Miltersen, E. Petrank, and
G. Tardos, “Linear hash functions,” J. of the ACM, vol. 46.

[2] N. Alon, O. Goldreich, J. Håstad, and R. Peralta, “Simple
construction of almost k-wise independent random variables,”
RANDOM, vol. 3.

[3] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, “Balanced
allocations,” SIAM J. on Computing, vol. 29.

[4] M. Bellare and J. Rompel, “Randomness-efficient oblivious
sampling,” in FOCS, 1994, pp. 276–287.

[5] L. Carter and M. N. Wegman, “Universal classes of hash
functions,” J. of Computer and System Sciences, vol. 18, pp.
143–154, 1979.

[6] L. E. Celis, O. Reingold, G. Segev, and U. Wieder, “Balls
and bins: Smaller hash families and faster evaluation (full
version),” ECCC report TR11-068, 2011.

[7] B. Chor and O. Goldreich, “Unbiased bits from sources of
weak randomness and probabilistic communication complex-
ity,” SIAM J. on Computing, vol. 17.

[8] M. Dietzfelbinger and F. Meyer auf der Heide, “A new
universal class of hash functions and dynamic hashing in real
time,” in ICALP, 1990, pp. 6–19.

[9] M. Dietzfelbinger and R. Pagh, “Succinct data structures for
retrieval and approximate membership,” in ICALP, 2008, pp.
385–396.

[10] M. Dietzfelbinger and M. Rink, “Applications of a splitting
trick,” in ICALP, 2009, pp. 354–365.

[11] M. Dietzfelbinger and P. Woelfel, “Almost random graphs
with simple hash functions,” in STOC, 2003, pp. 629–638.

[12] D. P. Dubhashi and A. Panconesi, Concentration of Measure
for the Analysis of Randomized Algorithms. Cambridge
University Press, 2009.

[13] M. L. Fredman, J. Komlós, and E. Szemerédi, “Storing a
sparse table with O(1) worst case access time,” J. of the
ACM, vol. 31, pp. 538–544, 1984.

[14] O. Goldreich and A. Wigderson, “Tiny families of functions
with random properties: A quality-size trade-off for hashing,”
RANDOM, vol. 11.

[15] T. Hagerup, “Sorting and searching on the word RAM,” in
STOC, 1998, pp. 366–398.

[16] T. Hagerup, P. B. Miltersen, and R. Pagh, “Deterministic
dictionaries,” J. of Algorithms, vol. 41, pp. 69–85, 2001.

[17] R. Impagliazzo, L. A. Levin, and M. Luby, “Pseudo-random
generation from one-way functions,” in STOC, 1989, pp. 12–
24.

[18] R. Impagliazzo, N. Nisan, and A. Wigderson, “Pseudoran-
domness for network algorithms,” in STOC, 1994, pp. 356–
364.

[19] C.-J. Lu, “Improved pseudorandom generators for combina-
torial rectangles,” Combinatorica, pp. 417–434, 2002.

[20] P. B. Miltersen, “Cell probe complexity - a survey,” in
FSTTCS, 1999.

[21] M. Mitzenmacher and S. Vadhan, “Why simple hash functions
work: Exploiting the entropy in a data stream,” in SODA,
2008, pp. 746–755.

[22] J. Naor and M. Naor, “Small-bias probability spaces: Effi-
cient constructions and applications,” SIAM J. on Computing,
vol. 22.

[23] N. Nisan, “Pseudorandom generators for space-bounded com-
putation,” Combinatorica, vol. 12.

[24] N. Nisan and D. Zuckerman, “Randomness is linear in space,”
J. of Computer and System Sciences, vol. 52.

[25] A. Pagh and R. Pagh, “Uniform hashing in constant time and
optimal space,” SIAM J. on Computing, vol. 38.

[26] A. Pagh, R. Pagh, and M. Ružić, “Linear probing with
constant independence,” in STOC, 2007, pp. 318–327.

[27] R. Pagh and F. F. Rodler, “Cuckoo hashing,” J. of Algorithms,
vol. 51, pp. 122–144, 2004.

[28] M. Pǎtraşcu and M. Thorup, “The power of simple tabulation
hashing,” STOC, 2011.

[29] J. P. Schmidt and A. Siegel, “The analysis of closed hashing
under limited randomness,” in STOC, 1990, pp. 224–234.

[30] A. Siegel, “On universal classes of extremely random
constant-time hash functions,” SIAM J. on Computing, vol. 33.

[31] B. Vöcking, “How asymmetry helps load balancing,” J. of the
ACM, vol. 50.

[32] P. Woelfel, “Asymmetric balanced allocation with simple hash
functions,” in SODA, 2006, pp. 424–433.

[33] D. Zuckerman, “Simulating BPP using a general weak ran-
dom source,” Algorithmica, vol. 16.

